
HOTLINE
16752770485发布时间:2024-08-04 14:32:27 点击量:
你是否有过当实验版本上线后,却发现有些实验细节还没想清楚?怎样的实验版本设计才能避免此类问题呢?本文将为你揭秘那些成功实验版本背后的3个简单步骤。
你是否有过当实验版本上线后,却发现有些实验细节还没想清楚?怎样的实验版本设计才能避免此类问题呢?本文将为你揭秘那些成功实验版本背后的3个简单步骤。
在这一部分要回答的问题是实验所做的改动在哪里?设计几个版本,它们之间的区别是什么?以及这些流量在版本之间是如何分配的。
设计实验版本的第一步,是要明确实验所做的改动在哪里。这一点比较简单,例如你的改动可能在APP的主页、营销落地页的按钮,或者是整个新用户注册流程等。
我们要注意的是龙8long8,不要随意想当然地改动。所有的实验假设和版本设计,都要选择那些高质量、有依据的,这样才能提高实验成功率,避免浪费开发设计资源。
举例来说,如果你要优化一个落地页,想看每个元素如何改动效果最好,那你可以试试不同颜色的按钮、不同文案、不同图片,每个版本只改变一个变量如颜色、文案或图片。
另一类是探索性实验,你可以在一个版本中同时改变多个变量,或者设计一个全新的版本。常见于两种情况:
要么是现有版本表现太差,与其慢慢优化,不如推倒重来,设计一个理想版本。此类实验允许大刀阔斧地改动。
需要强调的是,版本数量越多,实验所需的总样本数就越大。如果你的用户量不够大,龙8客户端登录建议不要设置太多的版本。
我们还是以一个红蓝按钮的例子来说明。假设在一个实验中,50%的用户看到蓝色版本,另外50%看到红色版本。
如果实验观测到,红色版本的点击率比蓝色高出50%,据此我们得出结论:红色版本比蓝色版本更好。但事实真的如此吗?
这说明了,AB实验中的样本分流是否均匀,会极大影响实验结论的可信性。如果样本分流做得不好,实验结果可能根本没有参考价值。
样本分流之所以要做到均匀,就是要消除一切外在因素的影响,确保对照组和实验组之间唯一的区别就是实验改动点,其他条件都一致。
举个例子,复联中的灭霸要随机消灭一半人口。这里的”随机”很关键,如果消灭的方式有选择性,比如留下的都是实力较弱的超级英雄,那他们最后输给灭霸,并不能说明这些英雄真的不如灭霸。因为消灭过程不是随机的,不符合分流均匀的要求。
以吆喝科技产品为例,可以在后台设置有多少流量进入实验,如果有多个实验同时进行,还能设置不同实验之间的流量分配。
增长 or 运营团队提交分流需求 → 工程师后端进行用户分流,龙8客户端登录前端APP和小程序埋点不同实验版本 → 后端控制前端执行相应实验版本,收集数据 → 分析师手动进行统计分析。
同时我们也要考虑我们这个实验是一个优化实验还是一个探索实验。优化实验建议去做单变量的测试,而探索实验可以做一个全新的设计。
科学分流是获得可信实验结果的关键。流量分配必须严格执行科学分流,不管是用第三方工具还是自建分流系统,这是获得可靠实验数据和结论的基础。
最后,在实验版本开发上线后,我们就可以收集数据,得出实验结果,总结实验心得,并规划后续优化计划,从而完成一次完整的AB实验。
最后总结一下,实验设计的艺术在于精确识别改动点、构建可靠实验假设、执行科学流量分配。通过本文的学习,希望你可以更系统、科学地进行实验,从而更精准地优化运营策略,提升运营效果。